
Building Multiple Regression Models Interactively

Harold V. Henderson; Paul F. Velleman

Biometrics, Vol. 37, No. 2. (Jun., 1981), pp. 391-411.

Stable URL:

http://links.jstor.org/sici?sici=0006-341X%28198106%2937%3A2%3C391%3ABMRMI%3E2.0.CO%3B2-5

Biometrics is currently published by International Biometric Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/ibs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Feb 6 18:02:28 2008

http://links.jstor.org/sici?sici=0006-341X%28198106%2937%3A2%3C391%3ABMRMI%3E2.0.CO%3B2-5
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/ibs.html


BIOMETRICS37, 391-41 1 
June 1981 

Building Multiple Regression Models Interactively 

Harold V. Henderson 
Ruakura Agricultural Research Centre, Hamilton, New Zealand 

and 

Paul F. Velleman 
New York State School of Industrial and Labor Relations, Cornell University, 

P.O. Box 1000, Ithaca, New York 14853, U.S.A. 

Automated multiple regression model-building techniques often hide important aspects of data from 
the data analyst. Such features as nonlinearity, collinearity, outliers, and points with high leverage 
can profoundly affect automated analyses, yet remain undetected. A n  alternative technique uses 
interactive computing and exploratory methods to discover unexpected features of the data. One 
important advantage of this approach is that the data analyst can use knowledge of the subject 
matter in the resolution of difficulties. The methods are illustrated with reanalyses of the two data 
sets used by Hocking (1976, Biornetrics 32, 1-44) to illustrate the use of automated regression 
methods. 

1. Introduction 

Practical multiple regression analysis has been changed radically in the past decade by the 
development and ready availability of automated regression techniques. Methods for 
building regression models are widely available in statistical packages and, as the cost of 
computing has dropped, they have become common data analysis tools. Yet many 
features of a data set can significantly alter the results of an automated regression and still 
remain undetected. 

We propose an alternative philosophy of computer-assisted data analysis: a collabora- 
tion of the data analyst and the computer, made practicable by the growing availability of 
interactive computing. We illustrate this philosophy with specific techniques for building a 
multiple regression model, and with two examples. Our approach constrasts with such 
automated procedures as stepwise, forward selection, backwards elimination, best subsets 
and principal components regression. These and other related methods were described 
and illustrated by Hocking (1976). For direct comparison, we base our examples on the 
same two data sets employed by Hocking. 

Our aim (like Hocking's) in analyzing these examples is not to discover the ultimate 
models for these data sets. We intend only to demonstrate that methods such as we 
propose are able to reveal features of data not found by automated methods, which 
change our understanding and lead to quite different analyses. 

2. Exploring Regression Data 

The fundamental axiom of this philosophy of data analysis is the declaration: 

The data analyst knows more than the computer. 

Key words: Data analysis; Outliers; Leverage; Stem-and-leaf display; Gasoline mileage; Air 
pollution and mortality. 
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More precisely, there is almost always information available to the data analyst 
(perhaps by asking the subject-discipline expert) that is not embodied in the numbers 
presented to the computer. In many cases the information could neither be effectively 
supplied to nor used by the computer. For example, most data analysts will know: (i) 
Water freezes at O0C,so a discontinuity at that temperature might not be surprising. (ii) 
People tend to round their age to the nearest five-year boundary. (iii) The Arab oil 
embargo made 1973 an unusual year for many economic measures. (iv) The lab technician 
who handled Sample 3 is new on the job. (v) It is harder to weigh a brown bear in the 
forest than to measure its height and girth. 

Many decisions made during a multivariate analysis (e.g. which variable to add next in a 
regression model) can involve selections among several alternatives which are almost 
equally good in the strict numerical sense of fitting the model to the data. In the absence 
of human guidance, the computer will make these decisions arbitrarily. In practice, a data 
analyst is likely to have a preference among the alternatives for other reasons, such as 
interpretability or  relationship to theory. What may be worse is that the computer's 
choice will usually be optimal for some criterion (e.g. maximizing R2 or minimizing C,) 
and can thus be presented as objective. 

Objectivity is a poor argument for automated analyses. The 'objective' decisions of the 
computer are tolerated only when the data analyst first makes the subjective decision to 
abdicate further responsibility. 

Many features of the data can affect the analysis without arousing the suspicions of the 
researcher or data analyst. Consequently, it is often better to examine the appropriate 
display than to compute the appropriate statistics. Displays accommodate the unexpected 
more gracefully. By 'the unexpected' we mean both the unexpected features we are taught 
to expect (nonlinearity, outliers, heteroskedasticity) and less easily described features such 
as discontinuities in a trend, or the clumping of observations. 

3. Methods 

Many of the techniques we illustrate here for building a regression model interactively 
have been presented elsewhere, although not always in this context. One excellent source 
is the book by Mosteller and Tukey (1977), which we recommend highly to anyone who 
computes or  reads regression analyses. 

3.1 Univariate Data Display 

To examine univariate distributions we use stem-and-leaf displays (Tukey, 1977). They 
have most of the virtures of histograms and two great advantages: they identify individual 
points, and they are not rendered useless by extraordinary values. elle em an and Hoaglin 
(1981) provided computer programs for stem-and-leaf displays and specified a display- 
scaling algorithm that resists the effects of extraordinary points. 

3.2 Transforming Data 

Data re-expressions can often make an asymmetric distribution more symmetric or a 
curved x-y relationship more nearly linear. These two applications of data re-expression 
are considered together by one technique for finding a good re-expression. 

For univariate data, define y, = the  qth fractile of the data, y, = y, = the  median, and 
yD = the  (1-q)th fractile. If the data are symmetric, (y, -yA)/(yD- y,) = 1 at each 
fractile. For an x-y relationship, define (x,, y,), (x,, y,) = (x,, y,) and (x,, yD) to be three 
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points (not necessarily in the data) which summarize each of three partitions of the x-y 
plane determined by dividing the x-axis into three regions, roughly equally spaced. 
[Velleman and Hoaglin (1981) gave an algorithm and computer program to find suitable 
points.] For simplicity, we assume equal spacing: x, -x, = xD -xc =Ax. If the x-y 
relationship is linear, the two 'half slopes' b, = (y, -y,)/Ax and b, = (yD-y,)lAx will be 
equal. Thus, in both cases the closeness of the data structure to the desired structure 
(symmetry or linearity) can be measured approximately by the closeness of 

to zero. 
The effect of the re-expression z =f(y)  can be measured by the change in h: 

Now, allowing the summary points and their transformations to converge according to 
YA + Y I  +Ye and Yc + Y 2 +  YD, 

h(f)  - h( l )  = log {dzldyll,, -log {dzld~ll,,. (3.3) 

For the common family of re-expressions, 

(3.3) reduces to 

The closeness of the data to the desired structure, as measured by h(p), is thus roughly 
linear in the power chosen, with a slope of 

The use of this slope for one step of Newton's method yields a proposed power: 

which should do a better job of simplifying the data structure. We could iterate (3.7) but 
we usually prefer an integer or simple rational power, so we are likely to round the first or 
second estimate to a nearby simple value rather than iterate to convergence. 

3.3 Extraordinary Data Points 

Many writers have discussed the detection and treatment of outliers in y. We use stem- 
and-leaf displays of residuals, quantile-quantile plots of the ordered values of y against 
expected Gaussian values (Wilk and Gnanadesikan, 1968), and partial regression plots 
(see below) to locate outliers and informally assess their influence, but many other 
techniques can be useful. 

Points which are extraordinary in predictor space can also have a large and unexpected 
influence on regression analyses and on automated regression procedures. Such points can 
be detected by their large 'leverage': the leverage of the ith data point in the multiple 
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regression, y =X$+e, is the ith diagonal element, hi, of the projection matrix, H = 
X(XIX)-'X'. Hoaglin and Welsch (1978) discussed the properties of H; they showed that 
0 Shi S 1(where hi = 1corresponds to devoting a degree of freedom to fitting the model 
to the ith point), and that replacement of yi by yi + 1 in the regression changes the 
corresponding predicted value 9i to gi +hi. They suggested that in a regression with p 
carriers and n data points, leverage values greater than 2pln deserve attention as possibly 
extreme. In particular, the leverage of the ith point in a regression with one predictor is 
(xi-z)~/C,  (xk -z ) ~ .The leverage of the ith point hi, and its residual, ei, are related by 

hi+e '  1L e c S l .  (3.8) 

Cook (1977) measured the influence of each data value on the vector of coefficients in 
terms of the Mahalanobis distance that $ would move were the ith data point omitted. 
His measure can be written as 

where p is the number of coefficients estimated and s2 is the usual estimate of the variance 
of the regression residuals. This statistic can fail to identify influential points if several 
extraordinary points support each other. We prefer to examine leverage and residuals 
separately. 

3.4 Partial Regression Plots 

Partial regression plots, used by Mosteller and Tukey (1977) and discussed by Belsley, 
Kuh and Welsch (1980), are a fundamental tool of interactive regression model building. 
For the multiple regression of y on 'carriers" xo= 1, x,, . . . ,%, i.e. 

define y.,,,.., (or, more precisely, Y.023...p) to be the residuals from the least squares 
regression of y on all carriers except x,, and define x ~ . ~ ~ , , , ,similarly as the residuals from 
the regression of x, on the other carriers. The partial regression plot for b ,  is the plot of 
Y.23...p against x1.2,,,,,. It has least squares slope b, and least squares residuals equal to the 
final residuals, e, and it displays the effects of individual points on the estimation of b1 in 
the full regression. The correlation of ~ . ~ 3 , , , ,  is a partial correlation. We write and X1.23,,.p 

xi.,,,, to indicate regression on the rest of the carriers excluding xi. Note that the final 
residuals, e = y.o12,,,p. 

The partial regression plot also depicts the partial leverage, q,.,,,,(i), of the ith data 
point due to the jth carrier. Specifically, qj.,,,,(i) is the amount by which hi would increase 
(decrease) were x, added to (removed from) the regression model.'Belsley et al. (1980) 
showed that 

Because xi.,,,, has zero mean, (3.11) is the leverage of the ith point in a one-carrier 
regression on xj.,,,,--that is, the leverage of the ith point in the partial regression plot for 
bi. 

'We follow the terminology introduced by Mosteller and Tukey (1977) and refer to  the xi (including 
the constant xo) as 'carriers'. A similar usage was followed by Sylvester (1884) in connection 
with simultaneous equations. 
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Partial regression plots are similar to a diagnostic display discussed by Ezekiel (1924), 
Larsen and McCleary (1972), and Wood (1973). Their display plots 

e +b,x, against xi, (3.12) 

where b, is estimated from the full multiple regression. Mosteller and Tukey (1977) 
showed that partial regression plots are equivalent to plotting 

e +b,xj.,,,, against 

We find both displays useful. The form of (3.12) is especially valuable in discovering a 
useful re-expression of xi which will linearize its relationship with y .  Nevertheless, we 
generally prefer the partial regression plot (3.13), and use (3.12) only when a partial 
regression plot indicates the need to re-express x,. Partial regression plots help the data 
analyst to recognize the inter-relationships among the predictors in the model. For 
example, the differences between, say, x,.,, and may be of greater magnitude and 
importance than the corresponding differences between y.,, and y.,,,, and so may better 
account for the changes in b1 brought about by introduction of x,. 

3.5 Inference and Validation 

Clearly, interactive regression model building is far enough removed from classical 
regression theory that we should be uneasy about using traditional procedures of statisti- 
cal inference. Nevertheless, such measures as t statistics for coefficients, multiple R2 
(adjusted for degress of freedom), and the F statistic for the regression are still useful 
measures of the success of a model in fitting a data set. Often a good fit is all that is 
needed. [Mosteller and Tukey (1977) discussed the value of asking no more from an 
analysis than an indication of the patterns in the data.] 

Where enough data is available, it may be wise to split the data in half randomly, build 
a model using one half and examine the success of the model on the other half. Such 
validation can, of course, be done in both directions and with more or different size 
partitions. At other times additional data may be available from a subsequent study. 

3.6 Combining the Techniques 

In the examples below we employ these techniques to build regression models. While we 
neither recommend nor follow a specific paradigm, we outline here some ways in which 
we have coordinated the various techniques. We begin by using stem-and-leaf displays 
and related exploratory methods (Tukey, 1977; Velleman and Hoaglin, 1981) to identify 
skewed univariate distributions, multimodalities, possible bad data, and other extraordi- 
nary patterns or items. We plot y against each available carrier to discover simple 
nonlinear relationships. On the basis of these displays, we re-express variables in order to 
improve symmetry and linearity where this seems advisable. While it is still possible for 
some variables to benefit from re-expression which will simplify multivariate relationships, 
it is well worth the effort to do the simple univariate and bivariate checks first. 

In building the regression models we use correlation and partial correlation (of 
y with candidate carriers) to nominate carriers for consideration. We also 
compute maximum partial leverage and maximum absolute residuals to identify those 
cases where the partial correlations might have been altered by extraordinary points. 
Partial regression plots are produced for each nominated carrier and examined in order to 
identify influential data points and to select variables to add to the model. We examine 



Biometrics, June 1981 

the final regression model by computing and analyzing residuals, computing tolerance 
values for each carrier, and examining any omitted points. 

Most computations were performed interactively on the Minitab statistics package 
(Ryan, Joiner and Ryan, 1976, 1980) on Cornell University's IBM 3701168 under a 
modified CMS operating system. Automated regressions were computed on SAS (Helwig 
and Council, 1979) and BMDP (Dixon and Brown, 1979). Some exhibits were generated 
with the programs by Vellemen and Hoaglin (1981) incorporated into Minitab. 

4. Gasoline Mileage Data 

The data, extracted from 1974 Motor Trend magazine, comprise gasoline mileage in miles 
per gallon (MPG), and ten aspects of automobile design and performance (Table 1) for 32 
automobiles (1973-74 models). The regression model attempts to predict gasoline mileage 

Table 1 

Data for Motor Trend sample of 32 automobiles* 


Codet Automobile MPG CYL DISP HP DRAT WT QSEC V/S AIM GEAR CARB 

iMazda RX-4i 

Mazda RX-4 Wagon$ 

Datsun 710 

Hornet 4 Drive 

Hornet Sportabout 

Valiant 

Duster 360 

Mercedes 240DS 

Mercedes 230 

Mercedes 280 . 

Mercedes 280C 

Mercedes 450SE 

Mercedes 450SL 

Mercedes 450SLC 

Cadillac Fleetwood 

Lincoln Continental 

Chrysler Imperial 

Fiat 128 

Honda Civic 

Toyota Corolla 

Toyota Corona 

Dodge Challenger 

AMC Javelin 

Camaro 2-28 

Pontiac Firebird 

Fiat XI-9 

Porsche 914-2i 

Lotus Europa 

Ford Pantera L 

Ferrari Dino 1973 

Maserati Bora 

Volvo 142E 


"By courtesy of Dr R. R. Hocking. 

i These letters are used for identification in Figs. 

$ Hocking's noncrucial coding of the Mazda's rotary engine as a straight six-cylinder engine and the Porsche's 


flat engine as a V engine, as well as the inclusion of the diesel Mercedes 240D, have been retained to enable 
direct comparisons to be made with previous analyses. 
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from the other variables. As Table 1shows, this particular sample of 32 automobiles has a 
bias to exotic, non-US., automobiles: it includes seven Mercedes, a Porsche, a Ferrari and 
a Maserati. Therefore, we might not expect a universal prediction model to emerge. 

Hocking (1976) analysed these data using various stepwise regression techniques, 
all-subset regressions with a variety of subset selection criteria such as minimum C, and 
minimum residual mean square (RMS), the biased estimation techniques of Stein shrin- 
kage and ridge regression, and principal component regression. On the basis of these 
analyses he suggested (p. 12) that the regression of MPG on TRANSMISSION TYPE, 
WEIGHT, and QUARTER MILE TIME 'may be best for prediction'. This model is 
difficult to interpret, and the absence of DISPLACEMENT or HORSEPOWER, which 
intuition suggests should be important in the prediction of MPG, is surprising. Hocking 
noted (pp. 25-26) that DISPLACEMENT exhibits instability and he found it disturbing 
that the ridge trace did not suggest the important role of his optimal subset. 

Multicollinearity aside, disturbing features like these are not uncommon in blind 
automated analyses. Simple inspection of plots of MPG on the carriers reveals curved 
relationships with several important variables, including WEIGHT and DISPLACE-
MENT (Fig. 1).The iteration in (3.7) suggests that (MPG)-' (= gallons per mile, GPM) 
would be more nearly linear against these carriers. (The metric equivalent, liters per 100 
kilometers, is in fact used in many countries.) To obtain more convenient units we 
rescaled GPM to gallons per 100 miles. Figure 2 shows improvement. GPM is also more 
likely to satisfy additive and homogenecius error assumptions because fuel consumption 
was measured over a fixed 73-mile route. 

Correlations and plots of GPM against promising carriers suggest WEIGHT as the best 
single predictor of GPM. There is also a loose theoretical argument that adds credence to 
this model. If gasoline consumed is proportional to the work expended in moving the 
vehicle [=force x distance], then on a per-mile basis, GPM c~ force WEIGHT. The 
regression of GPM on WEIGHT yielded the equation GPM =0.617+ 1.49 WEIGHT 
(GPM in gallons per 100 miles, WEIGHT in 1000 lbs), and marked the three U.S. luxury 
cars as high-leverage points in this sample. 

MPG 

36.0+ 

T 
R 

30.0+ S B 

z 
A 

24.0+ H 
C I 
2 2 D 

D J  E Y 
18.0+ K F 

2 
N 2 V  C 

G 9 
X 

12.0+ 
P 0 

6.0+ 

+---------+---------+---------+---------+---------+DIsp 
0. 100. 200. 300. 400. 500. 


Figure 1. MPG vs DISPlacement. Note the nonlinear relationship. (See Table 1 to identify 
automobiles with letters.) 
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GPM 

0.100+ 


Figure 2. GPM vs DISPlacement. Note the straightening of the relationship due to the re-
expression of MPG. 

At  this point we might want to include DISPLACEMENT or HORSEPOWER, but 
these variables offer little improvement in the model (possibly due to strong correlations 
with WEIGHT). An understanding of the types of cars in this collection suggests that a 
measure of how overpowered a car is might be useful. We computed the ratio of 
horsepower to weight, HP/WT, which is almost uncorrelated with WEIGHT (r = .003), 
and offered it as a carrier. It is the most promising contender for inclusion in the model at 
this step, having a partial correlation of 0.52 with GPM .WT. The partial regression plot 
of GPM .WT on HP/WT .WT (Fig. 3) shows two roughly parallel bands of points with 

GPM .'dT 

0.0160+ 


0 X G 


V E 
B 

S 2 N D 
Z A 

0.0 + A 
KBF 

F 
2 ME 

Figure 3. Partial regression plot of GPM . WT vs HP/WT . WT. Note the sports cars clustered in the 
upper right. 
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Table 2 
Regression of GPM on W T  and HP/ WTfor  Motor Trend sample 

Column Coefficient S D  of 
coefficient 

t ratio = 
coeff ./SD 

-0.401 0.512 -0.78 
X I  WT 1.472 0.122 12.11 
x2 HP/WT 0.02400 0.00730 3.29 
S D  of y about regression: s = 0.0661 with 32-3 = 29 df. 

R 2= 84.8% 

R' = 83.8%, adjusted for df. 


Predicted 
G;M Y SD Ofypred. :?':.. Residual 

Cadillac Fleetwood 15 9.62 8.26 0.28 1.35 2.25R 
Lincoln Continental 16 9.62 8.53 0.30 1.08 1.83X 
Chrysler Imperial 17 6.80 8.50 0.29 -1.70 -2.84R 
Lotus Europa 28 3.29 3.62 0.33 -0.33 -0.57X 
Ford Pantera L 29 6.33 6.26 0.30 0.07 0 . l l X  
Maserati Bora 31 6.67 7.11 0.37 -0.44 -0.08X 

R denotes an observation with a large standardized residual. 

X denotes an observation whose x value gives it large influence. 


most high-performance cars in the band to the right. This is the kind of unexpected 
pattern best revealed by displays. The gap between the bands might be due more to the 
omission of midsize American cars from this sample of automobiles than to an anomaly 
of automobile performance. 

Table 2 details the regression of GPM on WEIGHT and HP/WT and also notes those 
points with leverages greater than .19 (=2p/n) or with large residuals. The remaining 
available carriers do not significantly improve this model. In fact, we do slightly better by 

RESID 

0.0160+ 


X W 

v 

CUGS 

2 z 

2 
L EDRME 


H I 


GAUQUANT 

2 . 5  

Figure 4. Quantile-quantile (Q-Q) plot of residuals from the regression of Table 2. 
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fitting through the origin, which may make sense theoretically. The individual t statistics 
of the estimated coefficients are solid (12.11 and 3.29) and the residual Gaussian Q-Q 
plot (Fig. 4) is reasonably straight. In all, this three-carrier model predicts as well as 
Hocking's four-carrier automated regression solution, but is much easier to understand 
and interpret. 

To validate the model we collected data on 38 automobiles (1978-79 models) from 
Consumer Reports. Their MPG measure is similar to that in Motor Trend, being based in 
this case on a 123-mile test drive. Most other variables (including HORSEPOWER and 
WEIGHT) are recorded as reported by the manufacturers. This sample (Table 3) is more 
homogeneous than the Motor Trend sample, including American family sedans and station 
wagons as well as compacts and subcompacts. 

Table 3 
Data for Consumer Reports sample of 38 automobiles 

Code Automobile MPG CYL DISP HP DRAT WT ACCEL ENGTYPE 

Buick Estate Wagon 16.9 8 350 155 2.73 

Ford Country Sq. Wagon 15.5 8 351 142 2.26 

Chevy Malibu Wagon 19.2 8 267 125 2.56 

Chrys. Lebaron Wagon 18.5 8 360 150 2.45 

Chevette 30.0 4 98 68 3.70 

Toyota Corona 27.5 4 134 95 3.05 

Datsun 5 10 27.2 4 119 97 3.54 

Dodge Omni 30.9 4 105 75 3.37 

Audi 5000 20.3 5 131 103 3.90 

Volvo 240 GL 17.0 6 163 125 3.50 

Saab 99 GLE 21.6 4 121 115 3.77 

Peugeot 694 SL 16.2 6 163 133 3.58 

Buick Century Spec. 20.6 6 231 105 2.73 

Mercury Zephyr 20.8 6 200 85 3.08 

Dodge Aspen 18.6 6 225 110 2.71 

AMC Concord DIL 18.1 6 258 120 2.73 

Chevy Caprice Classic 17.0 8 305 130 2.41 

Ford LTD 17.6 8 302 129 2.26 

Mercury Grand Marquis 16.5 8 351 138 2.26 

Dodge St Regis 18.2 8 318 135 2.45 

Ford Mustang 4 26.5 4 140 88 3.08 

Ford Mustang Ghia 21.9 6 171 109 3.08 

Mazda GLC 34.1 4 86 65 3.73 

Dodge Colt 35.1 4 98 80 2.97 

AMC Spirit 27.4 4 121 80 3.08 

VW Scirocco 31.5 4 89 71 3.78 

Honda Accord LX 29.5 4 98 68 3.05 

Buick Skylark 28.4 4 151 90 2.53 

Chevy Citation 28.8 6 173 115 2.69 

Olds Omega 26.8 6 173 115 2.84 

Pontiac Phoenix 33.5 4 151 90 2.69 

Plymouth Horizon 34.2 4 105 70 3.37 

Datsun 210 31.8 4 85 65 3.70 

Fiat Strada 37.3 4 91 69 3.10 

VW Dasher 30.5 4 97 78 3.70 

Datsun 810 22.0 6 146 97 3.70 

BMW 320i 21.5 4 121 110 3.64 

VW Rabbit 31.9 4 89 71 3.78 
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unit = 0.1 
1 2  = 1.2 

Original Results Prediction Errors 

Figure 5. Back-to-back stem-and-leaf display comparing residuals from original regression with 
prediction errors from the Consurner Reports validation data set. 

We first predicted GPM for these cars using the model of Table 2, and then computed 
prediction errors (Fig. 5). The model did quite well: the mean square prediction error 
(0.313) is smaller than the original mean square residual in the Motor Trend data set 
(0.437). However, this may be due in part to the greater homogeneity of the Consumer 
Reports sample. 

We then computed the regression of GPM on WEIGHT and HPIWT for the Consumer 
Reports data (Table 4). The coefficients of both carriers agree quite closely with those for 
the original model. However, the standard deviation of the HP/WT coefficient is more 
than twice as large as before. 

Table 4 
Regression of G P M  on WT and HP/ WT for Consumer Reports sample 

SD of t ratio = 
Coefficient coefficient coeff ./SD 

- -1.0080 0.7331 -1.37 
xl WT 1.523 0.101 15.06 
x2 HP/WT 0.0275 0.0184 1.50 
SD of y about regression: s =0.434 with 38-3 = 35 df. 
R 2  = 86.7% 
R 2 =  85.9%, adjusted for df. 

Row G$M 
Predicted 

Y 
sD Ofpred. y 

Residual 2::; 
Volvo 240GL 10 5.88 4.86 0.10 1.01 2.41R 
Peugeot 604SL 12 6.17 5.25 0.11 0.91 2.18R 
Chevrolet Citation 29 3.47 4.16 0.17 -0.69 -1.74X 
Pontiac Phoenix 31 2.98 3.85 0.07 -0.86 -2.03R 

R denotes an observation with a large standardized residual. 

X denotes an observation whose x value gives it large influence. 
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We conclude from this that the re-expressed variable GPM is indeed approximately 
linear in WEIGHT and HP/WT and that the equation GPM21 .5  WEIGHT-t.026 
HP/WT seems useful for a wide variety of automobiles. The carrier HP/WT may be 
needed primarily to account for overpowered sports cars absent from the Consumer 
Reports sample. The intercept term may be useful, but it is difficult to tell from the 
samples. Certainly the linear extrapolation from 2000 Ibs to the origin is dangerous. 
Perhaps data on motorcycles and mopeds might confirm or  reject the linearity of the 
relationship near the origin. 

5. Air Pollution and Mortality 

McDonald and Schwing (1973) built a multiple regression model to predict age-adjusted 
mortality in 60 U.S. Standard Metropolitan Statistical Areas (SMSAs), from 15 variables 
measuring socio-economic, climatological, and air pollution features. Table 5 names the 
variables. They fitted regression models for the entire set of predictors and selected 
smaller models using an all-subsets selection method which minimized C, (Mallows, 
19731, and a 'ridge elimination' technique proposed by Hoerl and Kennard (1970). 
McDonald and Ayers (1978) employed multivariate graphical methods for these data (e.g. 
'faces' proposed by Chernoff, 1973) and presented the results. Hocking (1976) reanalysed 
the data using all of the methods mentioned in 04. Table 6 shows some of the models 
proposed by these authors. 

We first examined stem-and-leaf displays of all 16 variables. The most striking 
phenomenon is the extraordinary magnitude of air pollution in the California SMSAs. Los 
Angeles has a hydrocarbon potential of 648, while Chicago, the most extreme non-
California city, has a value of 88. The extreme California air pollution values are 
especially hazardous to blind automated regression techniques because they are not 
isolated values. Los Angeles has the remarkable leverage of .907 in the 16-carrier model. 
Nevertheless, Cook's distance fails to flag any of these points as extraordinary, partly 
because their residuals are not especially large, and partly because the four California 
SMSAs support each other. That is, omitting any one of them would make little difference 
in the regression coefficients. Their effect on automated variable-selection computations is 
similarly disguised by the fact that they are extreme on all three air pollution variables. 

The univariate distributions of the air pollution potentials are made nearly symmetric 
by re-expressing to logarithms, (e.g. Fig. 6), and plots of mortality against each of them 
become more nearly straight. [McDonald and Schwing (1973) suggested, but did not use, 
logarithmic re-expressions of the air pollution potentials; McDonald and Ayers (1979) did 
use this re-expression.] We added LOGHC, LOGNOX, and LOGS02 to the data set. 
When the re-expressed variables replaced the raw air pollution potentials the (16-carrier) 
leverage of Los Angeles dropped to .53, behind the leverage of both Miami (.69) and New 
Orleans (.60). 

The stem-and-leaf display of population density also aroused our suspicions. Two 
values are extreme: New York at 7462 people/mi2 and York, Pennsylvania at 9699 
people/mi2. We checked to confirm that the latter value is correct; it appears to have been 
caused by an odd definition of the SMSA boundary for York. Even so, it hardly seems to 
reflect accurately the urban character of York. We resolved to identify York in all future 
diagnostic displays and to consider omitting it if it exerted an undue influence on the 
model. 

We next examined the full correlation matrix. It suggested %NONWHITE as a good 
predictor ( r 2  = .414), and a plot confirms this. MORTALITY was regressed on 
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Table 5 

Descrlptlon of carfables, and llrt of cltler 1n data set from McDonald and Schwlng (1973) 


Variable name Description 

RAIN Mean annual precipitation in inches. 

JAN Mean January temperature in degrees Fahrenheit. 

JULY Mean July temperature in degrees Fahrenheit. 

OLD Percentage of 1960 SMSA population which is 65 years of age or over. 

POPIHSE Population per household, 1960 SMSA. 

EDUC Median school years completed for those oher 25 in 1960 SMSA. 


GDHSE Percentage of housing units that are sound with all facilities. 


POPDEN Population per square mile in urbanized area of SMSA in 1960. 


NONW Percentage of 1960 urbanized area population that is nonwhite. 


WCOL Percent employment in white-collar occupations in 1960 urbanized area. 


POOR Percentage of families with incomes under $3000 in 1960 urbanized area. 


HC Relative pollution potential of hydrocarbons, HC. 


NOX Relative pollution potential of oxides of nitrogen, NOx. 


S 0 2  Relative pollution potential of sulfur dioxide, SO,. 


HUMID Percent relative humidity, annual average at 1 p.m. 


MORT Total age-adjusted mortality rate, expressed as deaths per 100 000 population 


Code City Code City 
A Akron, Oh. E Memphis, Tn.  
B Albany, N.Y. F Miami, Fl. 
C Allentown, Pa G Milwaukee, Wi. 
D Atlanta, Ga H Minneapolis. Mn. 
E Baltimore, Md I Nashville, Tn. 
F Birmingham, Al. J New Haven, Ct 
G Boston, Ma. K New Orleans, La 
H Bridgeport, Ct L New York, N.Y. 
I Buffalo, N.Y. M Philadelphia, Pa 
J Canton, Oh. N Pittsburgh, Pa 
K Chattanooga, Tn. 0 Portland, Or. 
L Chicago, 11. P Providence, R.I. 
M Cincinnati, Oh. Q Reading, Pa 
N Cleveland, Oh. R Richmond, Va , 

0 Columbus, Oh. S Rochester, N.Y. 
P Dallas, Tx. T St. Louis, Mo. 
Q Dayton, Oh. u San Diego, Ca. 
R Denver, Co. v San Francisco, Ca. 
S Detroit, Mi. W San Jose, Ca. 
T Flint, Mi. X Seattle, Wa. 
u Fort Worth, Tx. Y Springfield, Ma. 
v Grand Rapids, Mi. z Syracuse, N.Y. 
W Greensboro, N.C. A Toledo, Oh. 
X Hartford, Ct B Utica, N.Y. 
Y Houston, Tx. C Washington, D.C. 
z Indianapolis, In. D Wichita, Ks 
A Kansas City, Mo. E Wilmington, De. 
B Lancaster, Pa F Worcester, Ma. 
C Los Angeles, Ca. G York, Pa 
D Louisville, Ky H Youngstown, Oh. 
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Table 6 
Coeficients ( t  statistics) for various regression lnodels for air pollution data 

Full models Min C, Ridge elim. subset Our choice 
p = 8  

1762 2069 120 788.4 1929 926.3CONST (4.03) (4.78) (9.80) (11.16) (6.62) (11.70) 
1.905 2.905 1.797 1.487 1.648 2.0088RAIN 

(2.06) (3.41) (3.0) (2.53) (2.73) (4.45) 
-1.95 -3.20 -1.484 -1.633 -1.893JAN 	 -

(-1.76) (-3.08) (-2.84) (-3.15) (-3.21) 

JULY -3.10 -3.87 -2.36 - -2.30 -
(-1.63) (-1.87) (-1.89) (-1.86) 

-9.07 -15.01OLD 	 - - - -
(-1.07) (-1.93) 

-106.9 -159.4 --62.0POP/HSE 
(-1.53) (-2.40) 

- -
(-1.39) 

-

-17.2 -18.9 -13.62 -11.53 -16.97 -16.89EDUC 
(- 1.45) (-1.82) (-2.12) (-1.74) (-2.40) (-2.97) 

-0.62 -0.58GDHSE 	 - - - -
(--0.35) (-0.37) 

POPDEN 0.0036 0.00358 - 0.00415 - ,01046
(0.89) (0.93) (1.14) 	 (3.02) 

4.46 4.00 4.585 4.144 5.216 2.467NONW 
(3.36) (3.13) (6.59) (6.32) (6.313 (4.89) 

-0.18 0.01WCOL 	 - - - -
(-0.11) (0.01) 


-0.14 0.87
POOR 	 - - - -
(-0.04) (0.30) 

0.11 -0.18HUMID 	 - - - -
(0.09) (-0.17) 


-0.673
HC 	 - - - - -
(-1.37) 

1.34NOx 	 - - - - -(1.34) 
0.086 - 0.260 0.245 0.225SO2 	 -

(0.58) 	 (3.31) (2.86) (2.763 
-81.6LOGHC -	 - - - -

(-2.32) 

LOGNOX - 124.3 
(3.56) 	 29.12 

LOGS02 - -18.7 - - - (3.38)-1
(-1.16) 

Y ORK -	 - - - -128.8 
(-3.69) 

LANCASTER - - - - - - 1  13.9 
(-4.00) 

M I M I  - -- - - , - -104.4 
(3.35) 

NEW ORLEANS - - - - - 82.1 
(2.86) 

Adi. R' 68.5% 72.8% 70.5% 69.3% 71.0% 81.6% 

I; 9.55 11.55 24.48 25.20 21.6 30.17 

~ ( d f )  34.9 (44) 32.4 (44) 33.8 (53) 34.5 (53) 33.5 (52) 26.6 (50) 
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NOx Pollution Potentials 

STEM-AND-LEAF DISPLAY 
LEAF DIGIT UNIT = 1.0000 
1 2 REPRESENTS 12. 

log (NOx Pollution Potentials) 

STEM-AND-LEAF DISPLAY 
LEAF DIGIT UNIT =0.1000 
1 2 REPRESENTS 1.2 

Figure 6. Stem-and-leaf displays of NOx pollution potentials and log (NOx pollution potentials). 

Note the protection from extraordinary values afforded by stem-and-leaf displays. 
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Figure 7. Partial regression plot of MORT against EDUC after removing NONW. Extraordinary 
values are York (G) and Lancaster (B), Pa. 

%NONWHITE, and (partial) correlations of the residuals, MORT.  NW, with the remain- 
ing candidate carriers, were computed. 

Median education (EDUC) was suggested (partial r2  = .242). The partial regression plot 
for EDUC (Fig. 7) reveals two extraordinary points, Lancaster and York, Pennsylvania, 
that have unusually low education and low mortality. This may be due to the large Amish 
populations in the area of these SMSAs, a phenomenon likely to confound rather than 
assist our understanding of the effects of air pollution on mortality. Because their high 
leverage influenced the regression away from the trend of the other SMSAs, we set aside 
York and Lancaster for later examination. (This also eased our qualms about the 
population density value for York.) 

The variables LOGS02  (partial r 2 =  .190) and population density, POPDEN, (partial 
r2  = .182) were now nominated. (Deleting York had enhanced the predictive strength of 
POPDEN.) Because we hoped to account for all non-pollution variables first, we over- 
ruled the 'objective' choice of the higher partial r2 and selected POPDEN at this step. 

The remaining partial correlations were all relatively unexciting on the surface, but 
some variables showed large partial leverage values, which suggested that the correlations 
might be deceiving. Figure 8 shows the partial regression plot (removing %NONWHITE, 
EDUC and POPDEN) for mean January temperature. The linear trend here is largely due 
to the partial leverage of Miami (q = .226) and Minneapolis (q= . loo).  Three southern 
California cities, San Diego, Los Angeles and San Jose, form an identifiable group in the 
lower right with a strong combined influence. We chose not to include January tempera- 
ture, although it had been included in the previously published analyses, because we 
would have been devoting a parameter to fitting few data points. 

By contrast, the partial regression plot for mean annual precipitation (RAIN) (Fig. 9), 
shows that Miami (q = .171) has sharply depressed its predictive value. (Note that these 
two variables alone account for much of the large leverage exhibited by Miami in the 
16-carrier model.) We omitted Miami, and fitted the regression model shown in Table 7. 
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Figure 8. Partial regression plot for mean January temperature removing EDUC, NONW and 
POPDEN (York and Lancaster omitted). Note extraordinary points: Minneapolis (H), Miami (F), 

and southern California cities: San Diego (U), Los Angeles (C) and San Jose (W). 

No other nonpollution variables improved the model, so we computed and plotted the 
partial regression plots (removing %NONWHITE, EDUC, POPDEN and RAIN for each 
of the three air pollution measures). Although LOGNOX shows the largest partial r 2  
(.069), the partial regression plot of LOGS02 (Fig. 10) reveals that New Orleans has 
depressed its effect (rl = .134). We had no grounds for preferring either of these variables, 
but they were too closely related to include both. Because they measured related 
quantities and were measured on equivalent scales, we constructed the combined variable 
LGNXS02 = log (NOX+S02),  included it in the model, and omitted New Orleans. We 
note that a researcher might have reasons for preferring either the model with LGS02  or 
that with LGNOX (and New Orleans). All three models fit almost equally well. 
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Figure 9. Partial regression plot for mean annual rainfall. Removing EDUC,  NONW and POP- 

D E N  (York and Lancaster omitted). Note extraordinary point: Miami (F). 
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Table 7 

Regression of MORT on NONW, EDUC, POPDEN and RAIN ,  omitting 


York and Lancaster, Pa, and Miami, F1. 


Column Coefficient SD of t ratio = 
coeff./SD 

- 1037.60 83.75 12.39 
xl NONW 2.709 0.508 5.34 
x2 EDUC -23.55 6.20 -3.80 
x, POPDEN 0.01614 0.00330 4.89 
x, RAIN 1.963 0.543 3.61 
SD of y about regression: s = 30.38 with 57 -5 = 52 df. 
R'= 77.3% 

R'= 75.5%, adjusted for df. 


Y Predicted SD of Residual Stand. 
MORT Y pred. y resid. 

Albany, N.Y. 997.87 925.85 6.05 72.03 2.42R 

Birmingham, Al. 1030.38 1059.42 12.77 -29.04 -1.05X 

Nashville, Tn. 1113.16 1051.45 10.96 61.71 2.18R 

New Haven, Ct 994.65 1019.14 13.26 -24.49 -0.09X 

Toledo, Oh. 967.80 984.27 13.62 -16.47 -0.61X 

Utica, N.Y. 823.76 887.09 6.85 -63.33 -2.14R 

Washington, D.C. 1003.50 943.49 6.79 60.01 2.03R 


R denotes an observation with a large standardized residual. 

X denotes an observation whose x value gives it large influence. 


The resulting model is shown in Table 8. To permit fair comparisons with other models 
and to emphasize that the extraordinary points have been treated specially but not 
forgotten, we have introduced dummy variables for the four extraordinary SMSAs. This 
10-carrier regression has an adjusted R2  of 81.6, and t statistics between 4.89 and 2.86 
(excluding the intercept). As Table 6 shows, it appears to fit better than previously 
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Figure 10. Partial regression plot for LOGS02 removing EDUC, NONW, POPDEN and RAIN 
(York, Lancaster and Miami omitted). Note extraordinary point: New Orleans (K). 
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Table 8 
Final regression model for air pollution mortality. Cities requiring special attention 

have been assigned dummy variables. 

Column Coefficient S D  of t ratio = 
coefficient coeff./SD 

-
xl NONW 
x2 EDUC 
X~ POPDEN 
x4 RAIN 
xs LGNOXS02 
~g YORK 
x, LANCASTER 
~g MIAMI 
x9 NEW ORLEANS 

SD of y about regression: s = 26.65 with 60 - 10= 50 df. 
R'= 84.4% 
R 2 =8l.6%, adjusted for df. 

Albany, N.Y. 997.87 928.22 5.34 69.65 2.67R 
Toledo, Oh. 972.46 919.76 5.77 52.70 2.03R 

R denotes an observation with a large standardized residual. 

RESID 

90.+ 


Figure 11. Gaussian quantile-quantile plot of residuals from the regression of Table 7 
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proposed models for these data. The largest residual is for Albany, New York (standar- 
dized residual = 2.67). The largest leverage values are for Washington, D.C. (h = .215) 
and Birmingham, Alabama (h = .206), but neither is particularly extreme. Figure 11 
shows the Gaussian Q-Q plot of the residuals. 

6. Summary 

Inexpensive computing and widely-distributed statistical packages have made blind auto- 
mated regression model building common. Unfortunately, this approach hides the data 
from the data analyst and arbitrarily makes decisions that might be better made by the 
data analyst or the subject-discipline expert. The spread of interactive computing has now 
made possible a new mode of computer-assisted data analysis: a collaboration between 
the data analyst and the computer. In such a collaboration, the computer provides a 
window into the data that enables the data analyst to employ his subject-discipline 
knowledge in making decisions about the regression model. 

We have discussed some elementary techniques to facilitate such analyses, and have 
illustrated them with reanalyses of two data sets. These examples show some of the 
patterns that can be revealed by this kind of data analysis. Most of these patterns eluded 
the automated regression methods employed by previous authors, and several seem to 
have significantly altered the automated analyses. 

It is important to stress that we have not attempted an exhaustive review of proposed or  
possible techniques for interactive regression model building and that the analyses 
discussed are illustrative only and not put forward as the 'correct' models for these data. 
We hope to see additional techniques developed in the coming years. 

This paper is a longer version of an invited address presented to the Institute of 
Mathematical Statistics Special Topics Conference on Regression held in Boulder, Col- 
orado in October 1979. 

Harold V. Henderson was supported by a New Zealand National Research Advisory 
Council Research Fellowship during his sojourn at Cornell University. The authors thank 
R.  R.  Hocking and G. C. McDonald for making available the data used in the examples. 

RESUME 
Les techniques automatiques pour la construction de modkles en rCgression multiple masquent 
souvent a l'analyste des aspects importants des donnCes analysCes. Des caractCristiques comme la 
non-linCaritC, la collinCaritC, la prksence d'observations suspectes peuvent affecter gravement les 
analyses automatiques sans Ctre pour autant dCcelables. Une alternative consiste a utiliser le calcul 
intCractif et les mCthodes exploratoires pour rCvCler des caractkristiques inattendues dans les 
donnkes. Un avantage important de cette approche est que l'analyste peut utiliser sa connaissance 
du sujet pour rCsoudre les difficultCs. Ces mCthodes sont illustrCes par un retour sur l'analyse de 
deux ensembles de donnCes utilisCes par Hocking (1976, Biometrics 32, 1-44) pour illustrer l'emploi 
de mCthodes automatiques en rCgression. 
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