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Some distance properties of latent root and vector methods 
used in multivariate analysis 

BY J. C. GOWER 
Rothamsted Experimental Station 

SUMMARY 
This paper is concerned with the representation of a multivariate sample of size n as 

points P1, P2, ..., PI in a Euclidean space. The interpretation of the distance A(Pi, Pj) between 
the ith andjth members of the sample is discussed for some commonly used types of analysis, 
including both Q and R techniques. When all the distances between n points are known a 
method is derived which finds their co-ordinates referred to principal axes. A set of necessary 
and sufficient conditions for a solution to exist in real Euclidean space is found. Q and R 
techniques are defined as being dual to one another when they both lead to a set of n points 
with the same inter-point distances. Pairs of dual techniques are derived. In factor analysis 
the distances between points whose co-ordinates are the estimated factor scores can be 
interpreted as D2 with a singular dispersion matrix. 

1. INTRODUCTION 

If we have information on v variates for each of n individuals, this can be set out in a 
two-way table with xij as the value of the jth variate for the ith individual. This table is the 
starting-point for most multivariate statistical methods such as discriminant analysis, 
factor analysis and principal components analysis. 

Different methods require different assumptions about the structure of the sample and 
about the hypothetical multivariate probability distribution from which the sample is 
drawn. Thus, in discriminant analysis we must be able to assign each individual to one of 
a set of predetermined groups each with a known distributional form, and in factor analysis 
the dispersion matrix must have a particular structure. 

Recently there has been widespread interest in the possibility of using numerical methods 
as an aid to classification. Sokal & Sneath (1963, p. 178) give references to investigations 
using a variety of different numerical methods; these methods all begin with a multivariate 
sample, but so far as is known each individual may come from a different biological popula- 
tion or all individuals may come from the same population. An additional complication is 
that many or all of the variates may be qualitative, so that product moment correlations 
between variates may be inappropriate. The techniques used are based on a n x n symmetric 
matrix A whose (i,j)th element, aij, is a coefficient of association between the ith and jth 
individuals. Sokal & Sneath (1963) give a list of commonly used coefficients, many of which 
are familiar to statisticians. 

In one type of analysis the matrix A is first calculated and then a method of forming 
groups of individuals known as a cluster analysis follows. Individuals are assigned to the 
same group when their coefficients in A obey certain criteria, which depend on the method 
of cluster analysis being used. These criteria always have a simple geometric interpretation 
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326 J. C. GOWER 

when ai1, or some function of aij, is regarded as the distance between the ith and jth indi- 
viduals. Thus an arbitrary distance a may be chosen and a criterion defined by saying that 
all members of a group must be within distance a of all other members, or that it must be 
possible to find a chain linking all members of the group such that the length of no link is 
greater than 6, or that the average distance between all members of the group is less than 
6, etc. The usual technique is to let 6 vary from a maximum to a minimum (sorting upwards) 
or from a minimum to a maximum (sorting downwards), and to examine how these groups 
split or combine at the different levels of d. Not only do different criteria give different 
groups, but some criteria form different groups for the same value of a6 when sorting upwards 
from when sorting downwards. 

We are not primarily concerned with cluster analysis here but only wish to emphasize that 
the concept of distance between individuals is fundamental to these techniques. 

Recognizing the metric nature of the matrix A, several workers have endeavoured to 
construct models in two or three dimensions which reflect the inter-individual distances; 
see, for example, Lysenko & Sneath (1959) and Bidwell & Hole (1964). One of the by- 
products-of most standard multivariate statistical techniques is a representation of the 
multivariate sample in a small number of dimensions. There is a growing tendency to use 
these techniques formally on association matrices to derive multi-dimensional representa- 
tions of the sample, although the standard underlying assumptions are not even approxi- 
mately satisfied. In particular the association matrix is a n x n matrix formed from the 
comparison of all pairs of individuals, i.e. a so-called Q matrix, whilst standard techniques 
postulate a v x v dispersion or correlation matrix, i.e. a so-called R matrix, formed from 
comparisons between the variates. Despite this the techniques have been used successfully, 
in the sense that the expected relative magnitudes of inter-individual distances have been 
recovered. In this paper we shall investigate the extent to which this use is valid. To do this 
we shall need the method of principal components analysis, which is therefore discussed in ?2. 

2. PRINCIPAL COMPONENT ANALYSIS 

When all the variates are quantitative, the method of principal components can be used 
to construct multi-dimensional models of the type just discussed. An interpretation for the 
special case of qualitative (0, 1) data is given in ? 4-1. Unlike other forms of multivariate 
analysis no assumption need be made about the distribution of the variates in the hypo- 
thetical population, except of course when significance tests are of interest. The multivariate 
sample is regarded as defining a set of n points Pi (i = 1,-2, ..., n) in v space, where Pi has 
co-ordinates (xi., xi2, ..., x,v) referred to rectangular axes. Thus the implied distance dij 
between PI and Pj is given by 

v 

di2j (XirXjr)2, (1) 
r=1 

and the spatial configuration of the sample is of interest only if dij satisfactorily measures 
the similarity between the ith and jth individuals. 

As a measure of similarity dij has the obvious defect that it depends in a complex manner 
on the scales of measurement of the different variates. When different variates are measured 
in different scales, dV, has nonsensical physical dimensions. To evade this difficulty it is 
common practice to normalize variates by dividing each by its sample standard error, but 
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other normalizers could be used, for example, the variate mean (when zero is not arbitrarily 
located), or the range or even the cube root of the sample third moment. 

Formula (1) makes no attempt to allow for correlations. In this respect dij has similar 
properties to measures of distance based on various similarity coefficients currently in 
favour in classification work and contrasts with distances used in discriminant analysis, 
e.g. D2. 

Principal components are computed by evaluating the latent roots and vectors of the 
sums of squares and products matrix formed from the normalized variates. The vector 
corresponding to the largest root gives the direction cosines of a line through the sample 
mean, C, such that the sum of squares of the perpendicular distances from the Pi onto this 
line is a minimum. If the foot of the perpendicular from Pi to the line is Hi then since 
CP4 = CIIM + 1HPg we must have maximized the sum of squares YGH4. In fact Y'GH4 is 
equal to the largest latent root; principal components analysis is therefore often regarded 
as a means of finding the direction cosines of a line such that the sum of squares of the 
projections GHi onto this line is a maximum. Having found one line with the above pro- 
perties, we look for a second line, at right angles to the first and corresponding to the second 
largest latent root and vector, which minimizes the sum of squares of the perpendiculars 
onto the plane defined by the two lines. The sum of squares in this new direction is equal to 
the second largest latent root. Similar properties hold for further roots and vectors. Clearly 
if the sample fits exactly into k( < v) dimensions the last v - k latent roots must be zero. 
Any dimension which has a small latent root will contribute little to the original distances 
between the normalized co-ordinates and may be ignored. When nearly all the variation is 
in two or three dimensions the co-ordinates of the feet of the perpendiculars Hlq from Pi onto 
the reduced dimensions may be used to plot a graph or construct a model preserving as 
nearly as possible, in the defined sense, the inter-individual distances di,. The points found 
will have the property that the square of the distance from Hi to IIj summed over all pairs 
of individuals will be the maximum possible for the chosen number of dimensions. The 
possibility of associating definite properties, e.g. factors, with the reduced number of 
dimensions will not be discussed here. 

3. Q-TECHNIQUES AND THE TREATMENT OF QUALITATIVE VARIATES 

The method of principal components is often used, and misused, by statisticians. When 
unordered qualitative variates occur it is not applicable, except possibly for the special case 
of (0, 1) data; see ? 4 1. A different axis can be assigned to each level of every qualitative 

Table 1. The latent roots and vectors of the symmetric matrix A 
(-,C is the mean value of the elements of the rth vector.) 

Root 

A1 A2 ... An 

Q1 C1l C12 ... CI,n 

Point Q2 C21 C22 ... C2n 

Qn cn 'n2 ... Cnn 

Centroid Q c-l c-2 ...Cn 

2I -2 
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variate and a score of 1 given if this level occurs and 0 if it does not occur; the problem then 
reduces to that of (0, 1) data discussed in ? 4 1. An alternative treatment frequently used for 
qualitative data, and sometimes for quantitative data, is to calculate a n x n Q matrix of 
coefficients of association between individuals. The co-ordinates of the point Qi corre- 
sponding to the ith individual are now defined by the ith component of each of the n vectors 
of the Q matrix. It is hoped to get a low-dimensional representation of the sample by using 
co-ordinate axes corresponding to only a few large latent roots. Such methods have been 
found to lead to reasonable results, but the underlying theory is not so well understood as is 
that of principal components analysis. In particular two questions arise: what is the correct 
scaling for each latent vector and what is the distance A(Qi, Qj) when this scaling is used? In 
the remainder of this section we first answer these questions, then show how the method can 
be improved and give a few ancillary results. 

Suppose A is a symmetric matrix of order n with latent roots A1l A2D . A and associated 
column vectors cl, c2, ..., cn. We may write the vectors down in a square array as in Table 1 
where the rth column is the vector cr. The technique outlined above is to take the elements 
of the ith row as the co-ordinates of a point Qi in n space and the distance dij betweenQi 
and Qj is then given by 

n n n 
- = EC2+ X C2r-2E Cir Cr (2) 

r=1 r=1 r=1 

Now it is a well-known property of latent vectors that if they are normalized so that the 
sums of squares of their elements are equal to their corresponding latent roots then 

A =c1cl + c2c2 + ***+ Cncn (3) 
n n 

Thus a - C c?r and aij = E CirCIr, 
r=1 r=1 

so that (2) becomes d = aii + ajj - 2aii. Thus when the vectors of Table 1 have been 
normalized so that E2c = -Ar, 

{A(Q, Qj)}2 = ai + aj1 -2aij. (4) 

The points Qi often have the right sort of metric properties for representing the inter- 
relationships between the individuals when A is an association matrix. For if A is a simi- 
larity matrix or a formal product-moment correlation matrix between the individuals, 
A(Qi, Qj) will be zero for complete identification and will attain its maximum value for 
complete opposites. In both these cases the diagonal elements of A are unity and (4) becomes 

{A(Q, Qj)}2 = 2(l - aij). 
It also follows from (4) that if we put aij = l-d21 and aii = 0 then A (Qi, Qj) = d,> and this 

gives a direct method of finding the co-ordinates of a set of points given their inter- 
distances d*j. 

It is easy to see why a good representation can be obtained in a reduced number of 
dimensions when some of the Ai are small. If Ar is small then the contribution (cir - Cjr)2 to 
the distance between Qi and Qj will also be small; in fact the sum of squares of the co- 
ordinates along the Ar axis is Ar by definition. However, if Ar is large but the cir corresponding 
to it are not very different then (cir - Cjr)2 will also be small. Thus, the only co-ordinates 
which contribute much to the distances are those for large Ar which have wide variation in 
the elements of their vectors. In many applications it is found that the distances can be 
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adequately expressed in terms of two or three such vectors. Very often the vector cor- 
responding to the largest root has more or less constant elements which by (3) will con- 
tribute constant amounts to all the aij and may be regarded as allowing for the mean value 
of all the elements of A. Clearly such a mean value is unimportant, for if we add any constant 
to all the elements of A and go through the same numerical procedure we will leave the 
distances A(Qi, Qj) as given by (4) invariant. We will of course get different co-ordinate 
values, Q*, in Table 1 and different roots but the distances will not have altered. These new 
points must be an orthogonal transformation of the first set after a change of origin and 
possibly a mirror image transformation, depending on the signs arbitrarily given to the 
vector elements; we can ask which of these transformations will give us the best fit with a 
reduced number of co-ordinates. This is precisely the situation for the use of a principal 
components analysis. If the elements of A are dimensionless, as is usual for association type 
matrices, then we have a set of co-ordinates given by Table 1, and principal components 
analysis will give the direction cosines of lines of best fit through Q in as many dimensions 
as required. These direction cosines are the latent vectors of a corrected sums of squares and 
products matrix B where the columns of Table 1 are now regarded as variates. We have 

n n 
z~~~ cij=A,zCfjC =0O, 

==1 

so that bij = Ai-n-0, bf =-ncicj. (5) 

The characteristic equation for the latent roots ,ui of B is 

f(4a) -2L+-2L ... + Ln-Lo/n = O, (6) 

where Lo (A1- ) (A2-1X) ... (An 

and Li = (A1- a) (Ai1 - ) (Ai1 - 1) ... (An -1X) if i t 0- 

Using equation (6) it is possible to relate the roots ,t to the roots A. First (6) has a zero root, 
because it is always possible to fit n points into n -1 dimensions, and secondly the remaining 
roots of (6) are separated by the roots A. Thus a knowledge of the Ai will tell us quite a lot 
about the best fit to be obtained from a principal components analysis of the Qi. 

If two, or more, of the Ai are negative then we must have one, or more, negative values 
of ,t, indicating that points cannot be found in real space such that d41i = aii + aj -2ai, 
When the negative jt have small modulus they will have little effect on the values of dij as 
calculated from the real co-ordinates and will give no trouble. If, however, a large negative 
It occurs it may still be possible to find a low-dimensional model to give the right order of 
magnitude of di2. but this model will involve one or more purely imaginary sets of co-ordinate 
axes which will upset intuitive ideas of distance. Thus the points Q1(1, i) and Q2(- 1, - ) 
will in fact be zero distance apart but in any real model will appear distant. Thus it becomes 
important to examine the conditions under which the matrix A will give rise to a real 
configuration. 

Obviously it is sufficient for A to be positive semi-definite (p.s.d.) for then all A and hence 
all It are non-negative. On the other hand if there is more than one negative A a real con- 
figuration is impossible because this implies at least one negative Itt. If there is just one 
negative root An then a real configuration is possible only when It,, > 0. If A has a zero root 
then a necessary and sufficient condition for a real configuration is that A is p.s.d., because 
if A has a negative root so will B. It is always possible to adjust A so that it has a zero root 
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without altering the distances A(Qi, Qj) for if di is the mean value of the ith row (or column) 
of A and -a is the overall mean we can define a matrix a with elements given by 

aij = aij-di-dj+ a (7) 
It is easy to see that = (8) 

preserving the distance property. The sum of every row and column of a is zero and 
consequently a has a zero root. 

A set of necessary and sufficient conditions for a real configuration of points Qi to exist 
such that the distances dij are given by d41 = ai+ ajj -2aij is that a be p.s.d. For many 
frequently used coefficients of association it can be shown that A has this property. An 
account of this work will be given elsewhere. 

We have now established that if we are given an association matrix A we can find a set 
of points Qi (i = 1, ..., n) in n space such that the distance dij between Qi and Qj is given by 
d4j = aii + ajj - 2aij and that for many coefficients of association this is a desirable property. 
Furthermore, it is legitimate to use the method of principal components on the co-ordinates 
of the Qi to find the best fit in fewer dimensions. This method requires a two-stage com- 
putational procedure and at each stage the latent roots and vectors of an n x n matrix are 
required. It would be advantageous if these two stages could be collapsed into one. From 
(5) we see that B will become the diagonal matrix diag (Al, A2, ..., A) if ci = 0 for all i and 
under these conditions the points Qi are themselves the principal component projections 
because the direction cosines defined by the vectors of any diagonal matrix are parallel to 
the original axes. 

Because the rows of a all sum to zero the vector 1 = (1, 1, ..., 1)' is the latent vector of a 
corresponding to the zero root, so that if v = (v., v2, ..., vn)' is any other latent vector, then 
1'v = 0 and thus Evi= 0. 

If now Table 1 has arisen from a rather than from A we have ci = 0, either because Ai = 0 
or by the above result. It follows from the previous paragraph that the points Qi derived 
from a are the principal component fit to the co-ordinates that would be arrived at after 
the two-stage calculation starting from A. 

The computational procedure suggested is: 
(i) Form the association matrix A. 
(ii) Transform this to a by equation (7). 
(iii) Construct Table 1 by finding the latent roots and vectors of a scaling each vector so 

that its sum of squares is equal to its corresponding latent root. 
(iv) The ith row of Table 1 may now be regarded as the co-ordinates of a set of points Qi 

whose distances apart are given by the best approximations to (aii + a, - 2aij)l in the 
chosen number of dimensions. 

(v) As in all principal components analyses, the sum of squares of the residuals (i.e. 
perpendiculars on to the reduced k-dimensional representation) will be the difference 
between the trace of a and the sum of the k largest roots of a. 

Results similar to those given above have previously been reported by Torgerson (1958, 
p. 123) but this author does not appear to realize the close connexion with principal com- 
ponents analysis and suggests that a can be analysed by any factor analytical method; 
such an approach would only obscure interpretation. Rao (1964), in a paper surveying the 
different uses of principal components, has quoted Torgerson's results but overlooks the 
fact that the co-ordinates obtained from a have their centroid as origin, for he advocates 
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shifting the origin to the centroid by replacing a by (I-i I'/n) a. Because the column means 
of a are zero, I'a is a null row vector and the formula leaves a unchanged. 

4. DUALITY OF Q AND R TECHNIQUES 

Q techniques are those which operate on a n x n matrix whose elements are measures of 
association between the individuals. R techniques operate on a v x v matrix defining 
relationships amongst the variates. Thus ? 3 is concerned with a Q technique whilst principal 
components and most other statistical multivariate methods are R techniques. Both Q and 
R techniques give the co-ordinates of a set of n points in multidimensional space. If, given 
a multivariate sample, a Q and an R technique both give rise to the same set of points, in the 
sense that the distances between all pairs of points are duplicated, then we shall say that 
the Q and R techniques are dual to one another. In a few important cases we can find pairs 
of dual techniques. 

4*1. The dual of principal components analysik 
The Q-matrix defined by qi, - j, where dij is given by (1), must, using the method of 

? 3, give rise to the principal components fit to a set of points whose distances apart are 
(qii + qjj - 2q j)1 = d,j. These are the original distances and it follows that the method of ? 3 
operating on - 1d01 is dual to principal components analysis of the sum of squares and 
products matrix between the variates. We now give an algebraic proof of this; we shall 
need some of the results later. 

Let X be the n x v data matrix composed entirely of variates with zero sample means, then 
the sums of squares and products matrix required for a principal component analysis is 
X'X. Suppose this matrix has a latent root A and corresponding vector u. Thus 

X'Xu = Au. (9) 

Consider the Q matrix XX' which has a root ,u and vector v then 

XX'v = ,Uv. (10) 
Pre-multiplying (9) by X we have 

XX'(Xu) = A(Xu), (11) 

so that A = ,t and Xu = kv, where k is a constant relating the scaling of the two sets of 
vectors. The direction cosines for principal components are normalized such that u'u = 1. 
From (11), k2v'v - u'X'Xu = Au'u = A. If we normalize the v vectors so that v'v = A as 
is required in ? 3 then k = 1 and (11) becomes v = Xu. 

The elements aij of the Q matrix XX' are given by 
V V 

ai =E x1r, aij = XirXjr. (12) 
r=1 r=1 

The method of ? 3 will give rise to a set of co-ordinates Qi whose inter-co-ordinate distances 
are given by v 

d4j = a + aj -2aj (x,(Xir -xj)2. (13) 
r=1 

Thus a dual of principal components analysis is the method of ? 3 operating on the 
Q matrix given by (12). Another Q matrix giving an identical solution is given by 

V 

qfj =-d22 =-2 E Xitr-Xjr)2 
r=1 
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of which (12) is the a matrix of ? 3. The co-ordinates given by the first t vectors of (12) are 
the same as those obtained from the projections on to the first t direction cosine vectors 
obtained from the principal component analysis. This follows from the fact that the 
technique of ? 3 gives the principal component fit to a set of points whose distances apart 
are given by (13) which are distances between the co-ordinate points used for the principal 
components analysis. There are two important special cases of this duality of principal 
components. These are dealt with in the following two subsections. 

Sokal's measure of taxonomic distance. Suppose each xij is standardized by the variate 
standard error sp, then principal components are derived from the correlation matrix. The 
distances are given by 

r= 

which is the measure of taxonomic distance proposed by Sokal and others (Sokal & Sneath, 
1963, p. 147). The technique of ? 3 used on the matrix 

V 

dii = Xir XjrIS r=1 

will lead to a reduced dimensional configuration identical to that obtained from a principal 
components analysis of the correlation matrix. 

When n < v the Q technique is clearly more convenient computationally because it 
requires the roots and vectors of a smaller matrix. When n > v the Q technique may still be 
better because it leads directly to the co-ordinates of Qi whilst the R technique needs a set 
of orthogonal transformations u'x to derive these co-ordinates. 

Matching coefficients. Suppose now that X is composed entirely of (0, 1) data. When com- 
paring two individuals we have, in the usual notation, a (1, 1), b (0, 1), c (1, 0) and d (0, 0) 
pairs where a + b + c + d = v, the number of variates. Sokal & Sneath (1963, p. 125) give 
a list of different matching coefficients which have been used from time to time. We are here 
only concerned with Sij = (a+ d)/v and note that 

(Xir -Xjr)2=b + c = v(l -Sij) 
r=1 

and that (12) becomes 

aii = number of characters present for ith individual, 1(14) 
aij= number of characters common to ith and jth individuals.( 

We shall ignore v in the following as it only has a constant multiplicative effect throughout 
and does not materially affect our results; in practice v may be important if there are, many 
missing values. The technique of ? 3 used on the matrix defined by (14) will give points 
distance {2( 1- Sij)}1 apart which are also the same as the distances given by aij = Sij. The 
same points would be obtained by a principal components analysis on the matrix of cor- 
rected sums of squares and products between the variates. Although a conventional 
principal components analysis of (0, 1) data may seem of dubious-validity, the above shows 
that it is exactly equivalent to assuming that the individuals are represented by points 
whose distances apart are proportional to (1 - Sij)i 
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4-2. Mahalanobis's D2 statistic and discriminant analysis 
If we have k different multivariate normal populations with a common dispersion matrix 

W, then the Mahalanobis measure of distance between the means xi and 5j of the ith and 
jth populations is given by 

D4Si =( i-X) W-1 (x-i- xi)' 
Assuming, without loss of generality, that lr+... + k = 0 for r = 1,2, ..., v, the a 

matrix corresponding to D2 is given by 

cXii = xFW-1lx, xij = xfW-lxj. (15) 

The method of ? 3 will give a set of k points referred to rectangular principal axes with 
inter-distances D,j. We shall show that the configuration using the space defined by some 
only of the co-ordinate axes is the same as that provided by the normal linear discriminant 
functions, or canonical variates, for the same dimensions. A closely related result is given 
by Rao (1952) where he showed that the first t canonical variates maximize the total D2 in 
t dimensions. 

The matrix a of (15) may be written.RW-1R', where X is the kI x v matrix of the population 
means whose ith row gives the means for the ith population. 

We put W-1 = UU'. This can always be done and in fact U may be upper triangular. 
Thus a = (XU) (XU)' and this is of the same form as (10) and consequently the analysis of 
? 3 gives the same results as a principal components analysis of (XU)'(XU), that is 
U'X'XU. We require the latent vectors 1 of U'X'XU; that is 

(U'X'XU-AI)1 = 0, or U'(X'X -AU'-'U-) Ul = 0. 

Now U'-1U-1 = (UU')-1 = W and therefore U'(X'X - AW) Ul = 0. 
This is the equation to be solved for finding the discriminant functions, whose coefficients 

are therefore given by Ul. 
The co-ordinates of the k means given by the discriminant coefficients are XU1 whilst 

those given by the principal components analysis are given by (11) and are also XU1. This 
proves the result. 

It is instructive to see what happens if, given a single population, we define the distance 
di between individuals by dg3 = (xi - xj) W-l(x - xj)', where W is the dispersion matrix. 
We may do this with D2 in mind, hoping to allow for correlations between the variates in 
our measure of distance. The previous algebraic treatment follows except that X'X is now 
W. Thus we have to solve (W - AW) Ul = 0, an equation which only has a non-null solution 
when A = 1 in which case any vector 1 will suffice. This implies that variation in all direc- 
tions is homogeneous, or, what amounts to the same thing, the points distance dij apart lie 
at the vertices of a regular simplex in n - 1 dimensions projected onto a space of v dimensions. 
This result is satisfactory because no preference is given to any one individual out of the 
whole set which define the population and reflects the attitude that the group of individuals 
is homogeneous. 

5. FACTOR ANALYSIS 

In the last paragraph we showed that a reasonable measure of distance between sample 
numbers of a single population does not lead to a reduction in the number of dimensions of 
the sample from the smaller of n -1 and v. Factor analysis achieves this by assuming that 
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each variate can be expressed as a linear compound of k (< v) hypothetical variates, the 
common factors, plus an additional term depending only on the particular variate and 
known as the specific factor. Algebraically the variates are related to each other by 

k 
xi= ,lifj+ei (i = 1,2,* ..,v). 

j=1 

The specifics ei are supposed to be independent of each other and of thefj. There is no loss of 
generality in assuming that the fj are uncorrelated and with unit variance. The covariance 
matrix C of the x's is C = LL' + V, where V is the diagonal matrix of the variances of the 
ei and L is the v x k matrix of the coefficients lij, the factor loadings. The problem is to 
estimate L and V and also to estimate the factor scoresfj for each individual. The estimation 
procedure depends on what is assumed about the distribution of the x's. 

5 1. Distances between individuals 
It is usual in factor analysis to concentrate interest on the factor loadings but we are 

more concerned here with the distances between the individuals, regarding their factor 
scores as co-ordinates. We first note that the fundamental equation of factor analysis may 
be written 

x-e = Lf. (16) 

Thus for any estimates of f for a set of individuals the corrected scores x - e lie in k-space 
as do the factor scores themselves. The factors f are uncorrelated with unit variance, though 
this is not true of the estimated factor scores using the methods discussed in the next 
section. Absence of correlation is retained for any orthogonal rotation of axes in factor 
space. Throughout this section we assume the theoretical unit dispersion matrix for the 
factor scores so that distances between the individuals with factor scores as co-ordinates 
can be calculated directly using D2 with a unit-dispersion matrix. The dispersion matrix for 
the corrected scores is C - V or LL' which has rank k and therefore no inverse in the ordinary 
sense. A slight extension to the definition will allow us to define D2 for singular dispersion 
matrices; details are given in the Appendix. 

Equation (16) relates the v variates x - e to the k variates f as described in the Appendix 
and therefore, using the extended definition of D2, the distances between the estimated 
factor scores are equal to the distances between the observed variates corrected for the 
estimated specifics. This result is independent of the particular method used for estimating 
the factor scores. 

An alternative way of looking at the factor analysis model is to regard the v-space of the 
x-variates as embedded in a (v + k)-space whose axes are orthogonal, v of these representing 
the specifics and k the common factors. Correcting the x's for the specifics ensures that 
a k-space is attained. 

Writing 6y for (xi - ei) - (xj - ej) and 61 for fi - fj, the differences between the corrected 
scores and the estimated factor scores respectively of two individuals i and j, the equality 
between the two distances gives 

MM A= 6y'(LL')- 5y, (17) 

where (LL')- is a suitably chosen generalized inverse of LL' depending on the method used 
for estimating factor scores; see below. 
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5*2. Distances usiny particular estimates of factor scores 
There are two closely related methods for estimating factor scores, one due to Bartlett 

(1938) and the other to Thomson (1951); see also Lawley & Maxwell (1963, p. 88). For 
each of these methods we can find an algebraic form for f' Mf in terms of the original data 
and the matrices C, V, L. 

Bartlett's method estimates the factor scores f by 

f = J-1L'V-lx, (18) 

where J = L'V-1L. (19) 

Thus on noting that 8y = L f and writing 6x for xi - xi, equation (17) becomes 

,x'V-1LJ-1J-1L'V-1ax - ax'V-1LJ-1L'(LL')-LJ-1L'V-1ax. (20) 

If we set (LL')- = V-1LJ-1J-1L'V-1, (21) 

we see that (20) is satisfied and it is easy to verify that this is a generalized inverse of LL'; for 

(LL') V-1LJ-2L'V-1(LL') = LL' 

follows immediately from (19). 
Thus for Bartlett's method of estimation the distance is given by 

ix'(LL')-6x which may be written 6x'(C - V)-6x, (22) 

with the particular generalized inverse given by (21). Equation (22) is Mahalanobis's D2 
with C - V in the role of the within population dispersion matrix. 

Thomson's method of estimating factor scores gives 

f = L'C-lx. (23) 

Substituting into (17), we have that 

ax'C-1LL'C-1ax = ax'C-1LL'(LL')-LL'C-1ax, (24) 

a result which is true by definition of a generalized inverse. 
Thus in Thomson's case the distance between the factor scores is given by 

axiC-i(C - V) C-18x, (25) 

which may be written 4x'[C(C - V)- C]->x so that C-1(C - V) C-1 is a generalized inverse 
of CV-1LJ-1J-1L'V-1C which may be shown to be equivalent to L(I + J-1)2L'. Thus (25) 
may be written 

8x'[L(I + J-1)2L']->x, (26) 

which is a more complex D2 form than (22). 

5*3. Relation of factor analysis to principal components 
This investigation of distance in factor analysis should not be taken to imply that the 

writer recommends the use of the method in the type of situation considered earlier where 
the multivariate sample cannot be considered as homogeneous. The method can be legiti- 
mately used only in those situations where its underlying assumptions are at least approxi- 
mately fulfilled; in many published applications this is not so. 
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Cattell (1965), a leading exponent of factor analysis, discussing the heterogeneous popula- 
tion problem recommends that a cluster analysis should precede factor analysis in an 
attempt to separate out the different populations or 'species'. We can then separately 
factor analyse the members of each species to find factors that define individuals within the 
species, and do an inter-species factor analysis on the species means to find the factors that 
differentiate species. This is contrary to common practice which uses factor analysis on the 
complete heterogeneous sample as an alternative to cluster analysis in the hope that the 
first factor will differentiate species; but as Cattell points out, 'the factors obtained will 
neither be clear species differentiators nor optimum individual differentiators'. In the 
model-making situations preliminary to classification, discussed earlier, there usually seems 
to be little justification for using factor analysis and the simpler computational methods 
given above in ? 3 are just as useful. It seems that the reason for obtaining meaningful 
results when using factor analysis in these situations is that the results obtained are often 
very close to the results obtained by a principal components analysis. 

Some insight into the relationship between the two methods can be obtained by noting 
that the maximum likelihood estimates of factor loadings satisfy the equations 

JL'V-1 = L'V-I(V-AV--I). (27) 

This is equation (2.11) of Lawley & Maxwell (1963) in a rearranged form. Thus L'V- are 
the first k latent vectors of V-IAV4 - I and J is the diagonal matrix of the latent roots. 
By setting J = L'V-1L the vectors are scaled so that the sum of squares of their elements 
equal the roots. Alternatively L'V- are the latent vectors of V-IAV- with roots given by 
I + J. In either case L'V-1 are the vectors of a matrix which is put into non-dimensional 
form by scaling by the diagonal matrix V-1. The situation is very close to the principal 
components analysis of the correlation matrix where V-m is replaced by S-1, the matrix of 
standard errors given by S = diag (A). Regarding J-L'V-1 as direction cosines derived 
from a principal components analysis of V-IAV-W we see that the projected values of scaled 
co-ordinates V-x onto k dimensions are given by 

v = J-L'V-lx. (28) 

This result differs from Bartlett's and Thomson's estimates of factor scores only in a scale 
factor along each of the k axes so that, except in exceptional circumstances, the same sort 
of spatial configuration can be expected from all the methods. Thus when V is proportional 
to S a principal components analysis can be expected to give similar results to a factor 
analysis. 

6. PROXIMITY ANALYSIS 

An interesting technique has been described by Shepard (1962 a, b) and further developed 
by Kruskal (1964a, b) who name their method Proximity Analysis. The method assumes 
the matrix A to be available and endeavours to find a set of points Qi in a reduced number 
of dimensions k such that the distances A(Qi, Qj) are monotonically related to the aij. Rather 
empirical methods are given for deciding on the optimum value of k required to preserve 
the monotonic relationship without using too many dimensions. The relationship of the a 
to the iX(Qi, Qj) gives the monotonic transformation of ail required to reduce dimensionality. 
For example, the monotonic transformation from aij to -log aij may be such that points 
Qj can be found in, say, two dimensions so that the ranking of the distances A(Qi, Qj) is very 
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nearly that of the - log aij and if this is so the graph of aij against A(Qi, Qj) should recover 
this transformation. The transformation, although monotonic, need not have any simple 
functional form. Shepard has produced examples to show that the method does indeed 
recover a known transformation when it is used on dummy data in two or three dimensions. 
The main interest of Shepard's work is that the numerical values of the aij are not used; 
only the rank order of their sizes is important. Shepard argues that when all the 1n(n -1) 
distances are known, a knowledge of their rank order, rather than the actual distances, 
entails very little loss of information. 

In ? 3 and when all the diagonal elements are originally 1, before calculating the a matrix, 
we have shown that the distances are given by {2(1 - aij)}1 and this is a particular monotonic 
transformation of the aij. Consequently if we get a good fit in, say, two dimensions using this 
distance function, we would expect high correlation with Shepard's solution. However, 
Shepard may be able to find a good fit in a low number of dimensions where the method of 
? 3 cannot. We are in effect using a particular distance function, though there is nothing to 
stop us transforming the values of aij ourselves if we have good reason to think that such 
a transformation will better reflect the inter-relationships between the individuals. As all 
similarities are positive numbers not greater than one, the points given by ? 3 must lie 
within an n-1 dimensional regular simplex. Thus the points for any three similarities 
812, 823, 831 lie inside an equilateral triangle of side V2. The logarithmic transformation will 
convert this restricted space to one where a pair of completely dissimilar individuals will 
become points an infinite distance apart, but it may introduce difficulties should no solution 
exist in real space. 

The relationships between Shepard's solution and the principal components solution 
needs investigation but as Shepard's computations are much more complex than those 
required to find latent roots and vectors of a symmetric matrix it is suggested that the 
method of ? 3 be tried first and if this does not lead to a solution of sufficiently low dimension- 
ality then the co-ordinates found in n -1 dimensions can be used as a starting-point for 
Shepard's iterative method. 

7. CONCLUSION 

The work reported in this paper grew from a dissatisfaction with the many reported 
applications of factor analysis and principal components analysis of Q matrices found in 
classification work, particularly in the biological literature. The interpretation of such 
methods can be better understood by examining the distances, suitably defined, between 
the individuals and we have given a method for finding co-ordinates for each individual 
referred to principal axes which preserve these distances. To distinguish the method from 
classical principal components analysis it might be useful to refer to a principal co-ordinate8 
analysis. 

Perhaps the most important aspect of this type of analysis is the suitable choice of a 
distance function. When identification is required D2 has certain optimal properties for 
normal populations whilst for non-normal populations, functions similar to D2 could be 
devised which would immediately provide a canonical analysis and might lead to a practical 
solution of the discriminant problem. Rao (1948) has suggested a general approach to the 
problem of distance which might be useful here. Unfortunately it is not always possible to 
recognize the different populations in the original sample of individuals and these must 
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first be found by using an analysis based on similarities or distances which do not allow for 
within population correlation. Further examination of the properties of such distances is 
needed. 

I thank Mr M. J. R. Healy for many helpful discussions and also for the neat proof that 
Zvi = 0 given at the end of ? 3. Much of this work was stimulated by Dr J. H. Rayner's 
concern with soil classification. 

APPENDIX. GENERALIZED DISTANCE WHEN THE DISPERSION MATRIX 

IS SINGTULAR 

To define D2 in the more general case we first note that if M is a non-singular k x k matrix and two sets 
of variates are related by y = Mx then D2 for the x's is the same as D2 for the y's, because 

(yi - yn) I {E(yy')}-' (yi - yj) = (xi - x,) M'{ME(xx') M'}-' M(xi - x,) 
= (xi - xi)I {E(xx')}-' (xi - xj). 

Thus a non-singular-transformation from one set of k variates to any other set of k variates leaves D2 
unchanged. Now suppose M is a v x k matrix with v > k, then we derive v variates y from the k variates x 
and E(yy') = ME(xx') M' only has rank k. We may choose a subset of k variates out of the v y variates 
in many ways, and at least one such subset Yi will have a dispersion matrix of rank k. Suppose in general 
that YI IY2, ..., Yr are all different subsets of size k with dispersion matrices of rank k: then each subset 
is a non-singular transformation of the x variates and must give rise to the same distance D2 as before. 
It is natural to choose this value of D2 as the distance. The value of D2 may be computed from a general- 
ized inverse of the dispersion matrix (Rao, 1962). 
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